Ahvaz Jundishapur University of Medical Sciences
Faculty of Medicine

Thesis for PhD degree of medical virology

Title:
Deliberation of full-Genomic Sequence and phylogenetic analysis of circulating strains of group A rotavirus in Ahvaz city

Place of Research:
Department of Virology

Author:
Azarakhsh Azaran

Supervisors:
Prof. Manoochehr Makvandi
Dr. Ali Teimoori

Registration No: 3030/D
Approval Date: 3/2/2016
Expiration Date: 27/5/2017

The expense of this thesis has been provided by the credit of the approved research project No OG-94134 and All right of this thesis is reserved for Ahvaz Jundishapur University of Medical Sciences
فرم شماره ۲۵: صورت جلسه دفاع از پایان نامه

با تاییدات خداوند عمل جلسه دفاع از پایان نامه آقای/آیه/احمد/امامی در

وضع داده شد که... شماره دانشجویی... تحت عنوان... نهاده و موضوع... با شماره و تاریخ... (در تاریخ... نشان داده شد... حضور استاد را... مشاور و هیأت داوران در محل... در زمان... تشکیل و با موقت از پایان نامه خود دفاع نموده و موفق به کسب نمره... در دسترس...)

یک... (به حروف... کرده است).

استاد (ان) راهنمای:

استاد (ان) مشاور:

محل امضاء:

محل امضاء:

محل امضاء:

محل امضاء:

نماهنگ زندگی: حساب دانشگاهی/محل امضاء و سپر

مدیر گروه: حساب دانشگاهی/محل امضاء و سپر

دکتر هیژیر جواهري زاده

معاون پژوهشی دانشکده پزشکی
Dedicated to my parents

My husband

My sister and brothers

Without whom none of my success

would possible

and

To whom I love the most
Acknowledgments

First of all, I would like to thank both of my supervisors, prof. Manoochehr Makvandi and Dr. Ali Teimoori, for their support and availability, throughout of my PhD research.

I also thank all of my friends in Jundishapur University of Medical Sciences. They each helped make my time in the PhD program more fun and interesting.

I would like to thank all the people who contributed in some way to the work described in this thesis.

Finally, I would like to express my sincere gratitude to my family for their continued support all these years. Without the support of all members of my family, I would never finish this thesis.

Financial support for this research was provided by the Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran as PhD thesis No.94134.
Table of contents
Chapter I Introduction .. 1
A.1 Problem .. 2
A.2 History of rotavirus .. 5
A.3 Classification of rotavirus .. 5
A.4 Virion structure .. Error! Bookmark not defined.
A.5 Genome structure and organization .. Error! Bookmark not defined.
A.6 Coding assignments .. Error! Bookmark not defined.
A.7 Stages of replication .. Error! Bookmark not defined.
 A.7.1 Overview of the replication cycle .. Error! Bookmark not defined.
 A.7.2 Attachment .. Error! Bookmark not defined.
 A.7.3 Penetration and uncoating .. Error! Bookmark not defined.
 A.7.4 RNA synthesis ... Error! Bookmark not defined.
 A.7.5 Genomic RNA replication and encapsidation (Packaging) ... Error! Bookmark not defined.
 A.7.6 Virion Maturation ... Error! Bookmark not defined.
 A.7.7 Virus Release ... Error! Bookmark not defined.
A.8 Rotavirus effects on the host cell .. Error! Bookmark not defined.
 A.8.1 Inhibition of translation of cellular mRNAs by NSP3 .. Error! Bookmark not defined.
 A.8.2 Rotavirus effects on cellular signaling pathways and apoptosis ... Error! Bookmark not defined.
A.9 Genetics and reverse genetics .. Error! Bookmark not defined.
A.10 Pathogenesis and pathology .. Error! Bookmark not defined.
A.11 Epidemiology .. Error! Bookmark not defined.
 A.11.1 Morbidity and Mortality in Children .. Error! Bookmark not defined.
A.12 Rotavirus serotypes .. Error! Bookmark not defined.
A.13 Rotavirus infections in adults .. Error! Bookmark not defined.
A.14 Nosocomial infections .. Error! Bookmark not defined.
A.15 Transmission .. Error! Bookmark not defined.
A.16 Incubation period .. Error! Bookmark not defined.
A.17 Distribution .. Error! Bookmark not defined.
 A.17.1 Geographic distribution and seasonal patterns ... Error! Bookmark not defined.
 A.17.2 Age, Sex, Race, and Socioeconomic Status ... Error! Bookmark not defined.
A.18 Molecular epidemiologic studies ... Error! Bookmark not defined.
A.19 Immunity .. Error! Bookmark not defined.
A.20 Clinical features
A.21 Diagnosis
A.22 Treatment
A.23 Prevention and control
A.23.1 Vaccines
A.23.2 Initial monovalent animal rotavirus ("Jennerian") vaccine candidates
A.23.3 The two major currently licensed live rotavirus vaccines, safety and efficacy
A.23.4 Other approaches to vaccination
A.24 Literature review
A.25 Objectives and hypothesis
A.25.1 General Objective
A.25.2 Specific Objectives
A.25.3 Applicational objectives
A.25.4 Hypothesis or questions
Chapter II Materials and methods
B.1 Materials
B.2. Patients and sample collection
B.4. Nucleic acid extraction and cDNA preparation
B.5. RT-PCR for VP6
B.6 Genotypying of the strains (G and P Genotyping)
B.7 Sequence analyzing for nontypeable strains
B.8 Selection of virus strains for full-genomic sequence
B.9 Viral dsRNA extraction
B.9.1 Extraction procedure
B.10 Amplification of the 11 gene segments by RT-PCR
B.10.1 Rotaviruses that failed to amplification of VP1, VP2, VP3, and VP4 genes segments
B.10.2 Primers design
B.11. Gel Extraction Protocol: For extraction of DNA fragments from agarose gel
B.12 TA Cloning
B.12. 1 Cloning principle
B.12.2 Map and features of pTZ57R/T cloning vector

B.12.3 Cloning protocol

B.12.3.1 Ligation

B.12.3.2 Transformation

B.12.3.3 Transformation Protocol from Overnight Bacterial Culture

(for 4 transformations)

B.12.3.4 Blue-white screening

B.12.4 Colony PCR

B.12.5 Plasmid DNA purification

B.12.5.1 Plasmid DNA purification procedure

B.12.6 Agarose gel electrophoresis of the extracted DNA

B.12.7 Restriction analysis

B.12.8 Agarose gel electrophoresis of recombinant digested plasmid

B.13 Sequence analyzing

B.14 Identification for genotype constellation

B.15 GenBank accession numbers

B.16 Statistical analysis

Chapter III Results

C.1 Prevalence of rotavirus

C.2 G and P Genotyping

C.2.1 Common and uncommon genotypes

C.3 Nucleic acid identities of the G12P[8] strains and accession numbers

C.4 Fecal samples, strains, and nomenclature

C.5 Amplification of the 11 gene segments by RT-PCR and extraction of segments from gel

C.6.1 Enzyme digestion

C.7 Nucleotide and amino acid sequence analysis of the study strains

C.7.1 Analysis of complete RV genome sequences derived from sample No.1

C.7.2 Analysis of complete RV genome sequences derived from sample No.2

C.7.3 Analysis of complete RV genome sequences derived from sample No.3
C.7.4 Analysis of complete RV genome sequences derived from sample No.4.

C.7.5 Analysis of complete RV genome sequences derived from sample No.5.

C.8 Comparative analyses of whole genome sequences.

C.8.1 Amplification, cloning, sequence and phylogenetic analyses of structural viral proteins.

C.8.1.1 Core proteins VP1, VP2 and VP3.

C.8.1.3 Outer capsid proteins VP4 and VP7.

C.9 Amplification, sequence and phylogenetic analyses of non-structural proteins.

C.9.1 NSP1.

C.9.2 NSP2 and NSP3.

C.9.3 NSP4.

C.9.4 NSP5.

Chapter IV Discussion.

D.1 G and P types.

C.2 Whole genome sequencing.

C.3 Conclusion.

C.4 Suggestions.

Appendices.

References.
Table of Figures
Figure A.1 Structural and biological properties of rotavirus particles. Error! Bookmark not defined.
Figure A.2 Rotavirus structures and locations of protein components. Error! Bookmark not defined.
Figure A.3 Major features of rotavirus gene structure. Error! Bookmark not defined.
Figure A.4 Electropherogram of rotavirus RNA segments. Error! Bookmark not defined.
Figure A.5 Coding assignments. Error! Bookmark not defined.
Figure A.6 Schematic of the rotavirus replication cycle. Error! Bookmark not defined.
Figure A.7 Virion disassembly and functions of RNAs for transcription, translation, genome replication, and packaging. Error! Bookmark not defined.
Figure A.8 Structural features of VP1 polymerase. Error! Bookmark not defined.
Figure A.9 Rotavirus pathogenesis. A: Schematic of the histopathologic and clinical effects of rotavirus infection of intestinal cells. B: Model of rotavirus-induced diarrhea. Rotavirus infection of a polarized epithelial cell triggers many effects that contribute Error! Bookmark not defined.

Figure B.1 The QIAamp MinElute Virus Spin Kit Procedure. Error! Bookmark not defined.
Figure B.2 Primer design for VP1 region. Error! Bookmark not defined.
Figure B.3 Map of the pTZ57R/T cloning vector. Unique restriction sites are indicated. Error! Bookmark not defined.
Figure B.4 DNA sequence of MCS region. Error! Bookmark not defined.
Figure B.5 Plasmid DNA extraction procedure. Error! Bookmark not defined.

Figure C.1 Latex agglutination test for screening rotavirus. Error! Bookmark not defined.
Figure C.2 Agarose gel electrophoresis of VP6 gene PCR product. Lane 1, 100bp DNA marker; Lane 3, positive control; Lane 4, negative control; Lane 1,2,5,6, and 7, patients. Error! Bookmark not defined.
Figure C. 3 Distribution of human species RVA G/P combinations in children with acute diarrhea ... Error! Bookmark not defined.

Figure C. 4 Agarose gel electrophoresis of VP7 gene PCR product (G typing). Lane 1, 100bp DNA marker; Lane 2, negative control; Lane 20, positive control (RV4). Error! Bookmark not defined.

Figure C. 5 Agarose gel electrophoresis of VP4 gene PCR product (P typing). Lane 1, 100bp DNA marker; Lane 16, positive control; Lane 17, negative control (RV4). Error! Bookmark not defined.

Figure C. 6 Chromatogram of G12 strains. A: patient no.14; B: patient no.26; C: patient no.27. ...Error! Bookmark not defined.

Figure C. 7 Phylogenetic tree for the G12 VP7 genes from human rotavirus strains available in the DNA databases. This phylogenetic tree was constructed by the Maximum Likelihood method, the genetic distances were computed according to the Kimura 2-parameter model Error! Bookmark not defined.

Figure C. 8 Agarose gel electrophoresis of nonstructural viral genes Error! Bookmark not defined.

Figure C. 9 Agarose gel electrophoresis of nonstructural viral genes Error! Bookmark not defined.

Figure C. 10 LB agar plates containing VP7 transformants. The presence of white and blue colonies is indication of successful transformation Error! Bookmark not defined.

Figure C. 11 Agarose gel electrophoresis of colony PCR. .Lane 1, 1kp DNA marker; Lane 2, 3, VP7 gene VP7 gene ... Error! Bookmark not defined.

Figure C. 12 Agarose gel electrophoresis of enzyme digestion. Lane 1, 1kp DNA marker; Lane 2, digested VP7 gene (colon 1); Lane 2, digested VP7 gene (colon 2); Lane 3, VP7 gene(no colon) ; Lane 4, negative control; Lane 8, positive control Error! Bookmark not defined.

Figure C. 13 Molecular phylogenetic analysis of nonstructural viral nucleotides Error! Bookmark not defined.

Figure C. 14 Molecular phylogenetic analysis of structural viral nucleotides ... Error! Bookmark not defined.

Figure C. 15 Molecular phylogenetic analysis of nonstructural viral nucleotides Error! Bookmark not defined.

Figure C. 16 Molecular phylogenetic analysis of structural viral nucleotides ... Error! Bookmark not defined.

Figure C. 17 Molecular phylogenetic analysis of nonstructural viral nucleotides Error! Bookmark not defined.

Figure C. 18 Molecular phylogenetic analysis of structural viral nucleotides ... Error! Bookmark not defined.

Figure C. 19 Molecular phylogenetic analysis of nonstructural viral nucleotides Error! Bookmark not defined.
Figure C. 20 Molecular phylogenetic analysis of structural viral nucleotides ...

Figure C. 21 Molecular phylogenetic analysis of nonstructural viral nucleotides ...

Figure C. 22 Molecular phylogenetic analysis of nonstructural viral nucleotides ...

Figure C. 23 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 VP1 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 24 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 VP2 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 25 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 VP3 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 26 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 VP6 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 27 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 VP7 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 28 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 NSP1 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 29 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 NSP2 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 30 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 NSP3 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 31 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 NSP4 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...

Figure C. 32 Neighbor joining phylogenetic tree show the genetic relationships of nucleotide sequences of 1, 2, 3, 4, and 5 NSP5 rotaviruses from Iran with known human and animal rotavirus strains from GenBank database ...
Table of Tables
No table of figures entries found.

Table B. 1 Demographic data and clinical features. .. Error! Bookmark not defined.
Table B. 2 primers correspond to VP4, VP6 and VP7 genes for rotavirus genotyping Error! Bookmark not defined.
Table B. 3 PCR master mix components for VP6 RT-PCR Error! Bookmark not defined.
Table B. 4 PCR reaction temperature condition.. Error! Bookmark not defined.
Table B. 5 PCR master mix components for semi multiplex RT-PCR (VP7) Error! Bookmark not defined.
Table B. 6 PCR master mix components for semi-multiplex PCR (VP4) Error! Bookmark not defined.
Table B. 7 Rotavirus gene-specific primers used for RT-PCR amplification Error! Bookmark not defined.
Table B. 8 Set up the ligation reaction... Error! Bookmark not defined.
Introduction: Group A rotavirus (RVA) mainly causes acute gastroenteritis exclusively in young children in developing countries. The prevalence and determination of the molecular epidemiology of rotavirus (RV) genotypes will determine the dominant rotavirus genotypes in the region. Many unusual combinations of G and P genotypes have been observed in rotaviruses circulating in developing countries. Mixed infection of a single individual with more than one strain is a mechanism by which genetic reassortants are formed with unusual G and P combinations. Full genome sequencing of rotavirus strains provide a strategy for the development of vaccine to prevent morbidity and mortality in children.
Materials and methods: A total of 100 faecal samples were collected from children below 5 years with acute gastroenteritis referred to Abooza Children’s Hospital of Ahvaz city during October 2015 to March 2016. All samples were screened by latex agglutination for the presence of rotavirus antigen. Rotavirus- positive samples were further analyzed by the semi-multiplex RT-PCR and the sequencing was done for the determination of G/P-genotyping. The full-genomic sequence was determined for strains G1P[8], G2P[4], G3P[8], G9P[8], and G12P[8] by RT-PCR and Biosystems 3730/3730xl DNA Analyzers Sequencing, Bioneer, South Korea.

Results: 32% of the specimens were RVA-positive by RT-PCR. Among the 32, VP7 genotyped strains, the predominant G genotype, was G9 (37.5%) followed by G2 (21.9%), G1 (12.5%), G12 (9.4%), G4 (9.4%), G2G9 (6.3%) and G3 (3.1%). Among the 31 VP4 genotyped strains, P [8] genotype was the dominant (62.5%) followed by P [4] (31.3%) and P [4] P [8] (3.1%). The genotypes for G and P were identified for 31 rotaviruses (96.87%) but only one strain, G9, remained nontypeable for the P genotype. The most prevalent G/P combination was G9P[8](28.5%), followed by G2P[4] (18.8%), G1P[8] (9.4%), G12P[8] (9.4%), G4P[8] (9.4%), G2G9P[4] (6.3%), G9P[4] P[8] (3.1%), G3P[8] (3.1%), G9P[4] (3.1%) G2P [8] (3.1%), and G9P [untypeable] (3.1%). A novel rotavirus strain, G12, for the first time was detected in patients from south-west Iran. Whole genome sequence and phylogenetic analyses revealed the existence of (i) 2-12 mutations in the VP7 genes, (ii) 6-16 mutations in the VP4 genes (iii) 2-6 mutations in the VP3 genes, (iv) 4-6 mutations in the NSP4 genes, (v) 2 mutations each in the VP1 and NSP3 genes, (vi) 1 mutation each in the VP2, NSP1 and NSP5 genes, and (v) no mutations in the VP6 and NSP2 genes.
Conclusion: The emergence of a new human rotavirus strain, G12, was identified in this region of Iran and sequenced for the first time. Furthermore, whole genome-based analyses are essential to understand the evolutionary dynamics of novel RVA strains such as G12P[8] strains. Comprehensive investigations are required to determine the prevalence of rotavirus genotypes in other regions of Iran to develop the region-specific vaccines.

Key words: Rotavirus, Genotype, Emergence, Novel, Sequence analysis, Iran
Chapter I
Introduction
A.1 Problem
Paediatric diarrhoea is frequently lethal since this illness causes severe dehydration (10). There are multiple causes of the disease including bacterial, parasitic and viral infections (2-4). Viruses, specifically of the rotavirus group A, are the predominant causes worldwide of viral gastroenteritis in children aged <5 years (5). Rotaviruses are repeated with high rates of morbidity and mortality in developed and developing countries, respectively (6).

Rotaviruses are transmitted via the faecal-oral route, which can happen directly from person to person, and contaminated drinking water (7). It is estimated about 125 million cases of diarrhoea and more than 453000 deaths occur worldwide annually due to gastroenteritis caused by rotaviruses (8, 9, 10).

Rotaviruses are non-enveloped, double stranded RNA and belonging to the Reoviridae family. The genome comprises 11 segments which encode six structural proteins (VP1-VP4, VP6, and VP7) and six nonstructural proteins (NSP1-NSP5/NSP6). According to the serologic cross-reactivity of the middle layer protein VP6, seven serogroups(A-G) have been firmly established, according to the VP6 genetic diversity there are likely to be at least eight(A-H) (11-13). The majority of human rotavirus infections belong to group A, although some strains of rotaviruses in groups B and C, too, can cause diarrhoea in humans. Rotaviruses are classified on the basis of their serological characteristics or genetic diversity of two outer capsid proteins, VP7 (glycosylated, G-type) and VP4 (protease sensitive, P-type) (14), since these protein targets for antibodies, are important for the broadening of the vaccine (15). So far, 27 different G and 37 different P-genotypes have been identified and approximately 73 G/P genotype of RVA have been reported to be responsible for acute diarrhoea in humans (16, 17). The major common rotavirus genotypes G1-G4, G9, P [8], P [4], and P [6] have been identified as the causative agents for gastroenteritis around the world (18, 19). Recently, the emergence of the novel G12 rotavirus has been reported in different
parts of the world (20-26). A high frequency of G12 associated with multiple VP4 genotypes has been reported in India, Bangladesh, and Nepal (27-30). Of all the possible combinations, six genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8]) have been observed in 80–90% of the isolated rotavirus infections (31-34).

The nucleotide sequence of all 11 rotavirus RNA segments for many rotavirus strains are known, and this forms the basis for the new classification system discussed earlier.(35) Each positive-sense RNA segment starts with a 5'-guanidine followed by a set of conserved sequences that are part of the 5' noncoding sequences. An open reading frame (ORF) coding for the protein product and ending with the stop codon follows, and then another set of noncoding sequences is found containing a subset of conserved terminal 3' sequences and ending with two 3' terminal cytidines. Almost all mRNAs end with the consensus sequence 5'-UGUGACC-3', and these sequences contain important signals for gene expression and genome replication. The last four nucleotides of the mRNAs function as translation enhancers.(36) The lengths of the 3' and 5' noncoding sequences vary for different genes, but the noncoding sequences of homologous strains are highly conserved (37).

The prototype simian SA11 strain was the first genome completely sequenced. The sequences from different rotavirus strains show general features of the structure of each genome segment. Matthijnssens and colleagues (2006) in Belgium showed that The Belgian rotavirus strain B4106, isolated from a child with gastroenteritis, was previously found to have VP7 (G3), VP4 (P[14]), and NSP4 (A genotype) genes closely related to those of lapine rotaviruses, suggesting a possible lapine origin or natural reassortment of strain B4106(16).
Tran and colleagues (2013) in India used full-genome sequencing to reanalyze a G3P[4] strain (107E1B) and a G2P[4] strain (116E3D) detected in India in 1993 and showed that 107E1B had virtually an identical nucleotide sequence with 116E3D, except the VP7 gene. Phylogenetic analysis revealed that the 107E1B VP7 gene was of typical human rotavirus origin, with a 99.3% nucleotide sequence identity with another Indian G3 VP7 gene. Thus, this study provided robust evidence for the formation of the G3P[4] strain through genetic reassortment in which a G2P[4] strain with a typical DS-1 genogroup background acquired the VP7 gene from a co-circulating G3 human rotavirus strain. This study established a basis on which to facilitate full genome sequence analysis of an increasing number of G3P[4] strains in China and elsewhere in the world (38).

Donato and colleagues (2014) in Australia reported a large outbreak of rotavirus gastroenteritis. The outbreak occurred 43 months after the introduction of the G1P[8] rotavirus vaccine RotarixH. Forty-three infants were hospitalized during the outbreak and analysis of fecal samples from each infant revealed a G1P[8] rotavirus strain. Whole genome sequencing demonstrated numerous amino acid differences compared to the RotarixH vaccine strain in the characterized neutralization epitopes of the VP7 and VP4 proteins. Phylogenetic analysis revealed a close genetic relationship to global strains, in particular RVA/Human-wt/BEL/BE0098/2009/G1P[8] and RVA/Human-wt/BEL/BE00038/2008/G1P[8] for numerous genes (39).

As mentioned studies, monitoring temporal changes in all 11 gene segments may help us to comprehend the nature and pattern of rotavirus evolution. Surveillance to monitor the strain diversity of circulating RV-A to detect possible strain replacement following the introduction of universal RV-A vaccine is a priority of the World Health Organization. Such studies are important to estimate potential impact of vaccination programs on circulating...
strains including whether escape mutants of known serotypes or novel strains that evade vaccine immunity will emerge (40).

A.2 History of rotavirus

Rotaviruses are the single most important cause of severe diarrheal illness in infants and young children in both developed and developing countries worldwide, accounting for 30% to 50% of these illnesses (41) Viruses were first discovered to be significant causes of diarrheal illness in the 1970s, with Norwalk virus being the first agent discovered in 1972 by Kapikian et al from an outbreak of gastroenteritis in a school in Norwalk, Ohio. Human rotaviruses were discovered in 1973, when particles were visualized by Bishop et al (42) in electron micrographs of thin sections of duodenal mucosa and later virus was identified in feces by electron microscopy. The 70-nm particles (44). from children’s feces were subsequently designated rotavirus and documented to be an important etiologic agent of severe diarrhea of infants and young children during the first 2 years of life in both developed and developing countries (45).

A.3 Classification of rotavirus

Rotaviruses are members of the genus Rotavirus within the family Reoviridae, and rotaviruses share common morphologic and biochemical properties. Early studies using negative-stain EM techniques underestimated the particle diameter, and the subsequent cryo-EM studies, in which no stains are used, established the particle diameter to be 100 nm including the spikes. Salient features are that (a) mature virus particles, including spikes, are about 100 nm (1,000 Å) in diameter and possess a triple-layered icosahedral protein capsid composed of an outer layer, an intermediate layer, and an inner core layer; (b) 60 protein spikes extend from the smooth surface of the outer shell; (c) outer capsid integrity requires calcium; (d) particles contain

1 - EM