Herpes Simplex Virus Meningitis in Children in South East of Caspian Sea, Iran

Somayeh Azadfar 1, Fatemeh Cheraghali 1, Abdolvahab Moradi 1, Naeme Javid 1, Alijan Tabarraei 1, 2

1 Department of Microbiology, Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, IR Iran. 2 Corresponding author: Alijan Tabarraei, Department of Microbiology, Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, IR Iran. Tel: +98-9812733521, Fax: +98-9112733321, E-mail: alijant@yahoo.com

Background: Herpes simplex virus (HSV) is a member of Herpesviridae and a leading cause of human viral diseases. Meningitis occurs as a complication of HSV-1 or HSV-2 primary infection.

Objectives: We aimed to evaluate HSV meningitis in children in Gorgan province, Iran.

Patients and Methods: Forty-five cerebrospinal fluid samples were taken from children referred with meningitis symptoms. Samples with negative bacterial culture results were tested for viral, biochemical and cytological assays. DNA extraction and PCR were performed.

Results: HSV-1 detected in 4 (8.8%) samples without any HSV-2 infections. Cases with positive results had fever and CSF pleocytosis. Vomiting, headache and higher count of WBC were observed in 3, 2 and 3 cases respectively. The cerebrospinal fluid (CSF) glucose and protein levels were normal and 3 cases showed positive C-reactive protein (CRP) results. Also, erythrocyte sedimentation rate (ESR) was higher than normal in all positive cases.

Conclusions: Distribution of HSV types in children with meningitis in our area predominantly was type 1 compared with type 2, which has been reported more in other areas.

Keywords: Herpes Simplex Virus; Meningitis; CSF; PCR; Children

1. Background

Meningitis is a widespread central nervous system diseases especially in children and infants (1). Viruses are the most common cause of aseptic meningitis in children and the study on etiology, clinical manifestations and diagnosis of viral meningitis has priority. Viral meningitis is generally similar to bacterial meningitis with less severity and differential diagnosis. In children, clinical manifestations of viral meningitis vary according to their age, immune status, and etiologic agents (2).

Neonates are more at the increased risk of severe systemic diseases, particularly nervous system involvement with Herpes simplex virus (HSV) (3). It has been reported that the herpes virus family collectively involved about 4% of viral meningitis cases which more are cases caused by HSV-2. As HSV-2 is restricted to aseptic meningitis in CNS infections, HSV-1 is the most common cause of herpetic encephalitis; however, some recent studies showed the diversion of common herpes virus meningitis causes from HSV-2 to HSV-1. Viral meningitis can occur at any age but is mostly common among young children. Currently, HSV is the second causes of viral meningitis in adolescents and adults living in developing countries (4, 5). Initial laboratory evaluations of a child with suspected meningitis included blood tests and lumbar puncture. The initial blood and CSF tests are essential for and should be bacterial cultures or CBC with differential and platelet count should be performed. Lumbar puncture also may provide relief symptom in patients with viral meningitis (6, 7).

The diagnosis of viral meningitis is based on culture results, direct fluorescent antibody (DFA), skin biopsy and molecular methods for detection of viral DNA. PCR is a method of choice for rapid, sensitive, and specific identification of HSV (8). Regarding to the importance of application of new techniques for viral meningitis detection for understanding of feature of epidemiology, pathogenesis, management, prognosis, therapy and prevention of viral meningitis, molecular diagnosis are pioneer.

2. Objectives

The aim of this study was to show the distribution of...
Aseptic meningitis caused by herpes simplex viruses, using PCR in children with respect to clinical manifestations and cerebrospinal fluid (CSF) laboratory findings. As far as we know, this is the first report of molecular detection of viruses in CSF from Gorgan, south east of Caspian sea, Iran.

3. Patients and Methods

3.1. Patients

In this study CSF samples were taken from children referred to Taleghani hospital with meningitis symptoms from June 2008 to September 2010. Demographic, clinical, biochemical and cytological data were collected. Children were clinically examined by the specialist and then from suspicious cases, samples were collected by lumbar puncture of spinal cord. Three separated tubes of CSF (3-5 mL) were transported to the laboratory for bacterial culture, biochemical analyses, cell count and molecular recognition. Blood and urine samples were taken for microscopic, biochemical assays, cell count and bacterial growth. PCR was performed on samples collected from patients with CSF pleocytosis and negative bacterial culture. Clinically, most of children had fever, vomiting, headache and fontanel.

3.2. Extraction

For DNA extraction, high pure viral nucleic acid kit (Roche, USA) was used according to manufacturer instruction. DNA was stored at -80°C until PCR performed.

3.3. Polymerase Chain Reaction (PCR)

Glycoprotein D gene sequences were used as primers (Table 1) for PCR (9).

For the reaction, optimized PCR amplifications of HSV-1 and HSV-2 were performed in a solution with a total volume of 50 μL containing 1X PCR buffer, 1.5 mM MgCl₂, 0.2 mM each of deoxynucleotide triphosphate (dNTPs), 10 pmol of each primers and 2.5 unit Taq DNA polymerase and nuclease free water (Fermentas, USA).

Table 1. Primer Sequences Used for PCR

<table>
<thead>
<tr>
<th>Virus</th>
<th>Genome Region Amplified</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV-1</td>
<td>Glycoprotein D</td>
<td>5’ CGA AGA CGT CCG GAA ACA AAC 3’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’ CGG TGC TCC AGG ATA AAA 3’</td>
</tr>
<tr>
<td>HSV-2</td>
<td>Glycoprotein D</td>
<td>5’GGA CGA GGC CCG AAA GCA CA3’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5’ CGG TGC TCC AGG ATA AA 3’</td>
</tr>
</tbody>
</table>

For both HSV-1 and HSV-2, the PCR program was as follow: 1 cycle at 94°C for 40 seconds followed by 33 cycles at 94°C for 20 seconds, 50 °C for 20 seconds and 72°C for 20 seconds.

Final extension was performed at 72°C for 1 minute. PCR product was loaded on 2 % w/v agarose gel and stained with ethidium bromide. The 298 bp product was visualized under UV translumination. Negative and positive controls were used.

3.4. Statistical Analysis

Data entered in SPSS (version 18) and statistical analysis performed with Chi Square test. All cases with P < 0.05 were considered significant.

4. Results

Of forty-five patients, 27 cases (60%) were male and 18 cases (40%) female. Children were between 1 month and 10 years old. The mean age of patient was 3.08 years with range of 5 months to 7 years (Table 2).

Table 2. Distribution of HSV-Positive Cases Based on Their Gender, Age and Residency

<table>
<thead>
<tr>
<th>Cases</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>HSV-1</td>
<td>4 (8.8)</td>
</tr>
<tr>
<td>HSV-2</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Female</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Age, mo</td>
<td></td>
</tr>
<tr>
<td>0-24</td>
<td>2 (4/4)</td>
</tr>
<tr>
<td>25-48</td>
<td>1 (2/2)</td>
</tr>
<tr>
<td>49-72</td>
<td>0 (0)</td>
</tr>
<tr>
<td>72-96</td>
<td>1 (2/2)</td>
</tr>
<tr>
<td>Residency</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Rural</td>
<td>2 (50)</td>
</tr>
</tbody>
</table>
HSV-1 was four times more (40%) than HSV-2 (10%) in CNS. In a previous study, it was shown that the incidence of HSV-1 meningitis is approximately 85% of cases, and is involved in 70% of neonatal herpes (16, 17). Recent studies in South of Iran revealed the 20% prevalence of HSV meningitis that about 7% belonged to HSV with no discrimination between type 1 and 2 (10).

The prevalence of neonatal herpes differs among countries. It is rarely seen in the UK but has shown high incidence in USA. Neonatal herpes can be resulted from infection with either HSV-1 or HSV-2, with the latter being associated with a poorer prognosis (11, 12). Previous seroepidemiological studies in our area, only showed seropositivity against HSV-1 (13). It has also been similar with the study in Greece (14). HSV meningitis pattern is going to be changed in different studies that are showing the diverson of prevalent HSV meningitis from HSV-2 to HSV-1. The HSV-2 is the most common cause of herpes simplex virus meningitis (5). Recent study in South of Iran revealed the 20% prevalence of HSV meningitis that about 7% belonged to HSV with no discrimination between type 1 and 2 (10).

The prevalence of neonatal herpes differs among countries. It is rarely seen in the UK but has shown high incidence in USA. Neonatal herpes can be resulted from infection with either HSV-1 or HSV-2, with the latter being associated with a poorer prognosis (11, 12). Previous seroepidemiological studies in our area, only showed seropositivity against HSV-1 (13). It has also been similar with the study in Greece (14). HSV meningitis pattern is going to be changed in different studies that are showing the diverson of prevalent HSV meningitis from HSV-2 to HSV-1. The HSV-2 is the most common cause of herpes simplex virus meningitis (5).

According to our results it seems that clinical symptoms are nonspecific and cannot be studied in children under 2 years old (23-25). In biochemical analysis as blood WBC level is high in infected cases, we have not observed in one child however it is not the matter to rule out meningitis (26). It seems that the CSF and blood analysis could largely suggest the presence of a viral agent in the samples, but there are some exceptions. This means we need more assays as well as fast and sensitive molecular diagnostic methods of viral meningitis.

In conclusion, as HSV meningitis is treatable and molecular methods provided a rapid diagnosis of viruses in CSF, it has to be considered for management of meningitis patients. It may reduce the hospitalization rate and the use of unnecessary therapies and improve the health system.

Acknowledgements

The authors appreciate the financial support of the Research Deputy of Golestan Medical University. This project was extracted from an MSC thesis.

Authors’ Contribution

Alijan Tabarraei developed the original idea and protocol, abstracted and analyzed data, wrote the manuscript, and is guarantor. Somyeh Azadfar, Fatemeh Cheraghali, Abdolvahab Moradi and Naemeh Javid developed the protocol, abstracted data, and prepared the manuscript.

Financial Disclosure

None declared.

Funding/Support

This study was supported by Infectious Diseases Research Center of Deputy of Research and Technology of
Golestan University of Medical Sciences.

References