پیام نامه:
جهت دریافت درجه دکترای داروسازی
موضوع:
مطالعه اثر تجویز خوراکی ال-تیروزین، اسید فولیک و پیریدوكسین در پیشگیری از پارکینسونیسم ایجاد شده با پرفنازی در موش صحرائی.
استاد راهنما:
جانب آقای دکتر ارشد پیرامون
نگارش:
محسن رضاپی
زمستان 1378
با سبای فراوان از زحمات:

جانب آقای دکتر اردشیر ارضی استاد راهنمای رساله
و
جانب آقای مهندس سید محمود لطیفی مشاور آماری رساله

و با تشکر از لطف تمامی دوستان عزیز و سروران دوران تحصیل

موفقیت و سرپندهای را از خداوند خواهتم.
با تشکر فراوان از:

پرسنل معتوه آزمایشگاه فارماکوپوئزی و دیگر آزمایشگاه‌ها. آقای نیا، آقای دنیسیا

و خانم نصر آبادی

آقای برزن

خانم اهل الیفر، مسئول اتاق کامپیوتر

پرسنل معتوه اداری و آموزش داروسازی، آقای لاری، خانم‌ها حسین زاده، سلمان زاده و اسکندری

پرسنل معتوه کتابخانه، آقای سپزی، خانم‌ها آبریز و کیاست

مسئول معتوه اتاق حیوانات دانشکده، آقای هوبز اوی

پرسنل معتوه شرکت رادیان، خانم‌ها شیخی نسب و رضاییان صفار

و سایر دوستانی که در تهیه و تدوین این رساله باربیک برده اند

به آمید بهروزی و سرافرازی آنها
با تشکر فراوان از زحمات بیدریگ:

پدر و مادرم

"به عنوان بوسه ای بر دستانشان
و برادران و خواهرانم
موفقتی و بهروزی آنها را از خداوند آرزومندم"
<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>فصل اول: مقدمه</td>
</tr>
<tr>
<td>50</td>
<td>فصل دوم: مواد، وسایل و روش کار</td>
</tr>
<tr>
<td>57</td>
<td>فصل سوم: نتایج</td>
</tr>
<tr>
<td>76</td>
<td>فصل چهارم: بیان و پیشنهادات</td>
</tr>
<tr>
<td>عنوان</td>
<td>صفحه</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ملاحظات عمومی</td>
<td>I</td>
</tr>
<tr>
<td>فهرست جامع</td>
<td>V</td>
</tr>
<tr>
<td>فهرست مطالب</td>
<td>VI</td>
</tr>
<tr>
<td>فهرست شکلها و جداول</td>
<td>X</td>
</tr>
<tr>
<td>فهرست نمودارها</td>
<td>XII</td>
</tr>
</tbody>
</table>

خلاصه فارسی

فصل اول : مقدمه

<p>| نروآناتومی بخش‌هایی در گرگ در بیماری پارکینسون | ۲ |
| هسته‌های قاعداتی | I |
| جسم سیاه | II |
| لوروس سولنوس | III |
| نروفسیبولوژی بخش‌هایی درگیر در بیماری پارکینسون | ۴ |
| عمل هسته‌های قاعداتی در اجرای الگوهای فعالیت حرکتی | ۹ |
| مسره‌های عصبی مدار بوتامن و هسته دمابر | I |
| اعمال میانجی‌های عصبی در هسته‌های قاعداتی | II |
| بیوسنتز و نقش بیوشیمیایی آل-تیروزین | ۱۲ |
| ویتامین B6 | ۱۴ |
| ویتامین | ۱۶ |</p>
<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>اسید فولیک (پتروئل غلوتامیک اسید)</td>
</tr>
<tr>
<td>21</td>
<td>سندرم پارکینسونیسم</td>
</tr>
<tr>
<td>21</td>
<td>بیماری پارکینسون</td>
</tr>
<tr>
<td>22</td>
<td>اتیولوژی و پاتوژن بیماری پارکینسون و دیدگاه‌های تازه</td>
</tr>
<tr>
<td>23</td>
<td>فرضیه رادیکال‌های آزاد</td>
</tr>
<tr>
<td>30</td>
<td>کارکرد میتوکندری در بیماری پارکینسون</td>
</tr>
<tr>
<td>31</td>
<td>دلایل نقص کمپلکس I در بیماری پارکینسون</td>
</tr>
<tr>
<td>34</td>
<td>درمان</td>
</tr>
<tr>
<td>35</td>
<td>درمان دارویی</td>
</tr>
<tr>
<td>36</td>
<td>- لودوبا</td>
</tr>
<tr>
<td>37</td>
<td>1- آگونیست‌های دوبامین</td>
</tr>
<tr>
<td>40</td>
<td>2- آگونیست‌های دوبامین</td>
</tr>
<tr>
<td>44</td>
<td>3- داروهایی که تخریب دوبامین را به تأخیر می‌آوردند</td>
</tr>
<tr>
<td>45</td>
<td>4- داروهایی که کلینرژیک مرکزی و آنتی‌هیستامین</td>
</tr>
<tr>
<td>46</td>
<td>5- آنتاگونیست اسید آمینه تحرکی</td>
</tr>
<tr>
<td>47</td>
<td>6- آنتی اسیدانها</td>
</tr>
<tr>
<td>48</td>
<td>7- داروهای متفرقه</td>
</tr>
<tr>
<td>48</td>
<td>تغذیه</td>
</tr>
<tr>
<td>49</td>
<td>درمان جراحی</td>
</tr>
<tr>
<td>ردیف</td>
<td>عنوان</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>مواد کاربردی</td>
</tr>
<tr>
<td>2</td>
<td>وسایل کاربردی</td>
</tr>
<tr>
<td>3</td>
<td>حیوانات آزمایشگاهی</td>
</tr>
<tr>
<td>4</td>
<td>روش آزمایش</td>
</tr>
<tr>
<td>5</td>
<td>روش آنالیز آماری</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ألف. مقایسه سفتی عضلانی در گروه‌های دریافت کننده دوزه‌های 2000 و 1000, 1500, 1000, 500 کیلوگرم آ-تیروزین</td>
</tr>
<tr>
<td>2</td>
<td>ب. مقایسه گروه دریافت کننده اسید فولیک (2.5 mg/kg) با گروه کنترل</td>
</tr>
<tr>
<td>3</td>
<td>ج. مقایسه گروه دریافت کننده ویتامین B6 (7 mg/kg) با گروه کنترل</td>
</tr>
<tr>
<td>4</td>
<td>د. مقایسه گروه دریافت کننده آل-تیروزین (150 mg/kg) با گروه کنترل</td>
</tr>
<tr>
<td>5</td>
<td>ه. مقایسه گروه دریافت کننده اسید فولیک (2.5 mg/kg) و ویتامین B6 (7 mg/kg) با گروه کنترل</td>
</tr>
<tr>
<td>6</td>
<td>و. مقایسه گروه دریافت کننده آل-تیروزین (250 mg/kg) با گروه کنترل</td>
</tr>
</tbody>
</table>
IX
فهرست مطالب

صفحه عنوان

ز. مقایسه گروه دریافت کننده ویتامین B6 (٢/٥mg/kg) و آل-تیروزین (١٥٠ mg/kg) با گروه کنترل؛ ٦١

ج. مقایسه گروه دریافت کننده اسید فولیک (٢٥٠mg/kg)، ویتامین B6 (٢/٥mg/kg) و آل-تیروزین (١٥٠ mg/kg) با گروه کنترل؛ ٦١

فصل چهارم: بحث و پیشنهادات

بحث
پیشنهادات
خلاصه انگلیسی
منابع
<table>
<thead>
<tr>
<th>عنوان</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل 1 - هسته‌های قاعدایی و موقعیت آنها (الف) در مغز و (ب) در جسم مخطط</td>
<td>4</td>
</tr>
<tr>
<td>شکل 2 - جسم سیاه و هسته‌های قاعدایی در برش کرونال مغز</td>
<td>6</td>
</tr>
<tr>
<td>شکل 3 - ارتباط هسته‌های قاعدایی با بخش‌های مسئول کنترل حرکت</td>
<td>8</td>
</tr>
<tr>
<td>شکل 4 - فیبرهای آوران به طرف استریاتوم</td>
<td>10</td>
</tr>
<tr>
<td>شکل 5 - فیبرهای وابران از استریاتوم</td>
<td>11</td>
</tr>
<tr>
<td>شکل 6 - مسیرهای تروبوین کننده میانجی‌های عصبی</td>
<td>12</td>
</tr>
<tr>
<td>شکل 7 - بوسترز تیروزین از فنیل آلانین توسط آنزیم فنیل آلانین هیدروکسیلاز</td>
<td>15</td>
</tr>
<tr>
<td>شکل 8 - بوسترزاتکول آمیدها</td>
<td>17</td>
</tr>
<tr>
<td>شکل 9 - مسیر متابولیسم کاتکول آمیدها</td>
<td>18</td>
</tr>
<tr>
<td>شکل 10 - اشکال طبیعی ویتامین B₆</td>
<td>19</td>
</tr>
<tr>
<td>شکل 11 - محل واکنش انواع آنزیم‌های اختصاصی پیریدوسال فسفات</td>
<td>19</td>
</tr>
<tr>
<td>شکل 12 - ساختار ساده فولیک</td>
<td>20</td>
</tr>
<tr>
<td>شکل 13 - تبدیل O₃ به H₂O</td>
<td>24</td>
</tr>
<tr>
<td>شکل 14 - واکنش زنجبیل‌های پراکسیداسیون لیپید</td>
<td>24</td>
</tr>
<tr>
<td>شکل 15 - تولید آبشاری رادیکالهای آزاد</td>
<td>27</td>
</tr>
<tr>
<td>شکل 16 - متابولیسم دوبیامین توسط (۳) به روش اکسیداسیون MAO (۴) (الف) و واکنش فنیتون و (ب) مکانیسم فرستی آسیب سلولی در بیماری پارکینسون</td>
<td>27</td>
</tr>
<tr>
<td>شکل 17 - (الف) واکنش فنیتون و (ب) مکانیسم فرستی آسیب سلولی در بیماری پارکینسون</td>
<td>29</td>
</tr>
<tr>
<td>شکل 18 - پیوستگی روی پلاستی سمی به صورت یک چرخه</td>
<td>32</td>
</tr>
<tr>
<td>صفحه</td>
<td>عنوان</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>27</td>
<td>شکل 19 - فرمول گسترده شیمیایی لودوپا، کاربورد و بنسرارید</td>
</tr>
<tr>
<td>41</td>
<td>شکل 20 - فرمول گسترده شیمیایی برومکربیتین</td>
</tr>
<tr>
<td>54</td>
<td>شکل 21 - موس صحرایی بدون حرکت روي میز استاده است و صرف اکانت از نقطه دست شروع به حرکت</td>
</tr>
<tr>
<td>55</td>
<td>میکند</td>
</tr>
<tr>
<td>55</td>
<td>شکل 22 - اندازه گیری میزان سختی عضلانی با استفاده از سکوی جویی به ارتفاع 2 سانتیمتر</td>
</tr>
<tr>
<td>55</td>
<td>شکل 23 - اندازه گیری میزان سختی عضلانی با استفاده از سکوی جویی به ارتفاع 9 سانتیمتر</td>
</tr>
<tr>
<td>45</td>
<td>جدول 1 - برخی از داروهای آنتی موسکارینیک که در بیماری پارکینسون بکار می‌رود</td>
</tr>
<tr>
<td>49</td>
<td>جدول 2 - میانگین رتبه‌های سفتی عضلانی ($\bar{X} \pm SE$) مربوط به زمان‌های مختلف آزمایش در گروه‌های آزمایشی</td>
</tr>
</tbody>
</table>
نمودار ۱ - مقایسه تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه‌هایی که دوزهای مختلف از ال-تیروزین (۲۰۰۰ mg/kg) و (۱۵۰۰، ۱۰۰۰ و ۵۰۰۰ mg/kg) را دریافت نموده‌اند.

نمودار ۲ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده اسید فولیک در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۳ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده ال-تیروزین B6 در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۴ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده ال-تیروزین B6 در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۵ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده اسید فولیک در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۶ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده ال-تیروزین (B6) در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۷ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده ال-تیروزین (B6) در مقایسه با گروهی کنترل در موس صحرایی.

نمودار ۸ - تغییرات شدت سفتی عضلانی در زمان‌های مختلف در گروه دریافت کننده ال-تیروزین (B6) در مقایسه با گروهی کنترل در موس صحرایی.
عنوان

صفحه

نمودار ۹- تغییرات شدت سفتی عضلانی در زمانهای مختلف در گروه دریافت کننده ال-تیروزین (۱۵۰۰ mg/kg) و ویتامین B6 (۲/۵ mg/kg) در موس صحرایی.

نمودار ۱۰- تغییرات شدت سفتی عضلانی در زمانهای مختلف در گروه دریافت کننده ال-تیروزین (۱۵۰۰ mg/kg) و اسید فولیک (۲۵۰ μg/kg) در مقایسه با گروه دریافت کننده ال-تیروزین و ویتامین B6 (۲/۵ mg/kg).

نمودار ۱۱- تغییرات شدت سفتی عضلانی در زمانهای مختلف در گروه دریافت کننده اسید فولیک (۲/۵ mg/kg) و ال-تیروزین (۱۵۰۰ mg/kg) و ویتامین B6 (۲/۵ mg/kg) در مقایسه با گروه کنترل، در موس صحرایی.

نمودار ۱۲- تغییرات شدت سفتی عضلانی در زمانهای مختلف در گروه دریافت کننده ال-تیروزین (۱۵۰۰ mg/kg) در مقایسه با گروه دریافت کننده ال-تیروزین و اسید فولیک (۲/۵ mg/kg) و ویتامین B6 (۲/۵ mg/kg).

نمودار ۱۳- تغییرات شدت سفتی عضلانی در زمانهای مختلف در گروه دریافت کننده ال-تیروزین (۱۵۰۰ mg/kg) در مقایسه با هم در موس صحرایی.

نمودار ۱۴- مقایسه تغییرات شدت سفتی عضلانی در زمانهای مختلف در همه گروه‌های آزمایشی، در موس صحرایی.
مطالعه اثر تجویز خوراکی آل-تیروزین، اسید فولیک و پیریدوکسین در پیشگیری از پارکینسونیسم ایجاد شده با پرفنزا در موش صحرائی. محسن رضایی

واژه‌های کلیدی: آل-تیروزین، اسید فولیک، پیریدوکسین، پارکینسونیسم، موش صحرائی

با گذشت زمان و پیشرفت علم روش‌های گوناگونی برای بیماری پارکینسون پیشنهاد شده است. از سوی دیگر پیامدهای پیشرفت بیماری و عوارض داروهایی که به ویژه لودوپا به عنوان اساسی ترین دارو در درمان این بیماری، پژوهشگران با بر آن داشته است تا بررسی بیشتر بر روی داروهای موجود و گسترش داروهای جدید در درمان بیماری پارکینسون را پیشرفت دهنند. بر این اساس در مطالعه حاضر کاربرد خوراکی آل-تیروزین به همراه اسید فولیک و پیریدوکسین در پیشگیری از پارکینسونیسم ایجاد شده با پرفنزا در موش صحرائی (روش موربوگو) (1962) مورد بررسی قرار گرفته است. موش‌های صحرائی نر و ماده از گونه N-MARJ هفته متوالی روزانه به ترتیب تحت تجویز خوراکی اسید فولیک (0.25 میلی‌گرم بر کیلوگرم)، پیریدوکسین هیدروکلراید (2/5 میلی‌گرم بر کیلوگرم)، آل-تیروزین (1500 میلی‌گرم بر کیلوگرم)، اسید فولیک و آل-تیروزین، پیریدوکسین هیدروکلراید و آل-تیروزین و اسید فولیک به همراه پیریدوکسین هیدروکلراید و آل-تیروزین قرار گرفتند. یاد آورند که در هر دو گروه کنترل، حامل داروها یعنی آب مقرط را به دست هفته دریافت نمود. یک ساعت پس از آذرین تجویز خوراکی پرفنزا به مقدار 5 میلی‌گرم بر کیلوگرم از طریق داخل صفاقی به تمام حیوانات تزریق گشت و سفیدی عضلانی در زمان‌های ۲۰، ۴۰، ۶۰، ۱۲۰، ۱۸۰ و ۲۴۰ دقیقه پس از تزریق اندازه‌گیری شد.

با توجه به نتایج، تمام گروه‌هایی که در زریم دارویی خور آل-تیروزین دریافت داشتند، سفیدی عضلانی در آنها کاهش معنی‌داری (P<0.05) نسبت به گروه کنترل نشان داد. از سوی دیگر گروه‌هایی که تنها با ویتامین‌هایِ بی‌پای تهیه‌داده‌های دو ویتامین باهم یا به تنهایی، سفیدی عضلانی در آنها کاهش معنی‌داری را نسبت به گروه کنترل نشان نداده است. با این حال گروهی که اسید فولیک را به همراه آل-تیروزین دریافت نموده بود، در مقایسه با سایر گروه‌ها، وضعیت بهتری داشت. در این بررسی نتیجه‌گیری کرده که آل-تیروزین به همراه اسید فولیک در پیشگیری از پارکینسونیسم ایجاد شده توسط پرفنزا مشخص شد. بنابراین پیشنهاد می‌شود کاربرد این ویتامین با آل-تیروزین در مقایسه با آل-تیروزین به تنها، بیشتر بررسی شده و در صورت دستیابی به نتایج کافی، در بیماران سنجش بالینی شود.
فصل أول

مقدمة
نرواناتومی و فیزیولوژی بخش هایی از مغز که در بیماری پارکینسون نقش دارند

نرواناتومی بخش‌های در گیر در بیماری پارکینسون

1- هسته‌های قاعده‌ای

هسته‌های قاعده‌ای (شکل 1) توپه‌های زیر قشری از ماده‌های خاکستری بوته‌ه که در عمق نیمکره‌های مغز جای دارند و هسته‌های دمادار، بوتامن، گلوبوس بالیدوس، کلاستروم و جسم پادامی را شامل می‌شوند. اهمیت کلاستروم جندان معلوم نیست و جسم پادامی نیز یک بخش کارکرده‌ای از سیستم‌های ییمپیک و بوتاپیک به حساب می‌آید. هسته‌های ساب تسامیک و جسم سیاه در نظر ساختنی با هسته‌های قاعده‌ای وابسته به نیستند ولی از نظر کارکرده‌ای، ارتباطی تنگاتنگ با این هسته‌ها دارند و به همین علت گاهی این دو قسمت راکه نقش مهمی در اعمال حرکتی دارند نیز بخشی از هسته‌های قاعده‌ای می‌دانند (2 و 3).

1 . Basal nuclei
2 . Caudate nucleus
3 . Putamen
4 . Globus pallidus
5 . Clausrum
6 . Amygdaloid body
7 . Limbic system
8 . Subthalamic nucleus
9 . Substantia nigra
Lateral sulcus
Claustrum
Lateral ventricle
Caudate nucleus
Internal capsule
External capsule
Column of fornix
Globus pallidus
Putamen
Lateral sulcus
Insular cortex
Olfactory area
Uncus
Amygdaloid complex
Cavum septum pellucidum
Corpus callosum
Lateral ventricle
Caudate nucleus
Internal capsule
External capsule
Claustrum
Extreme capsule
Anterior commissure
Cleft for internal capsule
Head of caudate nucleus
Thalamus
Lateral geniculate body
Optic tract
Amygdaloid nucleus
Tail of caudate nucleus
Head of caudate nucleus
Putamen
عبارت‌های زیر نیز در مورد هسته‌های قاعده‌ای به کار می‌رود (۱):

۱) استریاتوم (نئو استریاتوم) = هسته‌ددمار و پالائیدوم
۲) پالائیدوم (نالو استریاتوم) = گلوپوس بالیدوس
۳) هسته عدسی ۳ = پوتامن و گلوپوس بالیدوس

هسته‌دمدار و عدسی دو بخش اصلی هسته‌های قاعده‌ای بوده و روی هم جسم مختلط ۴ نامیده می‌شوند (۲).

پوتامن و هسته‌دمدار از تنسفالون ۵ مشتق شده‌اند، این دو هر یک توسط دسته‌های فیبری کیسول داخیلی ۶ به صورت دو بخش جداگانه در آمده‌اند و لیه‌های سلول‌ی در محل‌های زیادی آنها را به هم متصل کرده است (۲).

جسم سیاه

جسم سیاه (شکل ۲) را می‌توان به آسانی با یک جسم غیر مسلح دید. این جسم به صورت ورقه‌ای نیز رنگی از ماده خاکستری، پایه‌های مغزی ۷ از به دو بخش تقسیم می‌کند.

قسمت‌هایی که در جلوی ماده سیاه واقع شده است، همان پایه‌های مغزی ۸ که با حفره بین پایه‌ای کامل‌الاز هم جدا شده‌اند. قسمتی که در پشت جسم سیاه قرار دارد، تگمنتوم ۹ یا بوسته‌ی داخیلی نام دارد. هسته جسم سیاه حاوی نرون‌های یکند قطعی نسبتاً درشتی است که با الیافی از قشر مخ ۱۰، هیپوپالاموس ۱۱ و هسته‌های قاعده‌ای ارتباط دارد. رنگ تیره این هسته به علت وجود رنگدانه‌های ملاتینین

<table>
<thead>
<tr>
<th>عدد</th>
<th>نام هسته‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>Striatum (neostriatum)</td>
</tr>
<tr>
<td>۲</td>
<td>Pallidum (paleostriatum)</td>
</tr>
<tr>
<td>۳</td>
<td>Lentiform nucleus</td>
</tr>
<tr>
<td>۴</td>
<td>Corpus striatum</td>
</tr>
<tr>
<td>۵</td>
<td>Telencephalon</td>
</tr>
<tr>
<td>۶</td>
<td>Internal capsule</td>
</tr>
<tr>
<td>۷</td>
<td>Cerebral peduncles</td>
</tr>
<tr>
<td>۸</td>
<td>Crus cerebri</td>
</tr>
<tr>
<td>۹</td>
<td>Tegmentum</td>
</tr>
<tr>
<td>۱۰</td>
<td>Cerebral cortex</td>
</tr>
<tr>
<td>۱۱</td>
<td>Hypothalamus</td>
</tr>
</tbody>
</table>
شکل ۲- جسم سیاه و هسته‌های قاعدایی در برخ کروناال مغز (۱)

A: هسته دم‌دار
G: هسته عدیسی
J: جسم سیاه
در سلول‌های پارس کمپکتا یعنی بخش فشرده پشتی جسم سیاه می‌باشد. این بخش دارای سلول‌هایی است که معنی‌های عصبی آنها دوپامین می‌باشد. بخش مشبک شکمی از جسم سیاه که پارس رتیکولاریس ۳ نام دارد همانند غلوبوس بالیدوس دارای سلول‌های گلیال محتوی آهن است (۴ و ۲).

III - لوكوس سولونوس

این بخش تجمعی نانومتری از سلول‌های دارای رنگدانه، نزدیک به راه‌های خاکستری دور بری نیست.

قسمت فوقانی پهن چهارم می‌باشد. سلول‌های لوكوس سولونوس دوگونه‌اند:

الف) سلول‌های با اندازه متوسط که هسته‌های آنها محیطی بوده و دارای گرانول‌های ملاتینی

فراوان هستند.

ب) سلول‌های بیضوی کوچک یا بدون رنگدانه بوده و سیتوپلاسم ناجیزی دارند (۳).

به‌ویژه این هسته رنگدانه‌ای کوچک با استفاده از تکنیک حساس فلورسانس ۳ مشخص شد; زیرا

سلول‌های آن دارای کاتکول‌آمین‌ها بوده که تقریباً تمام آن تئور این نفرین است. برخلاف سایر سلول‌های

تنه مغزی دارای نور این نفرین بوده و به صورت نردن‌های پرکند در تکمیل موجودی قرار دارند. لوكوس سولونوس یک هسته فشرده بوده که فیبرها پر به طور گسترده به سایر تئور مغز و تغذیه ارسال

می‌دارد. لوكوس سولونوس احتمالاً جزو تکنیک‌های شبکه‌ای است و اعتقاد بر این است که در خواب

منطقه، تسهیل کار و همچنین مهار نردن‌های حسی و کنترل فعالیت تئور نقش دارد. با این وجود

عمل دقیق آن به خوبی مشخص نشده است (۴ و ۳).

1. Pars compacta
2. Pars reticularis
3. Locus ceruleus
4. Fluorescence technic
5. Catecholamines
6. Paradoxical sleep